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Abstract
A new approach based on a unitary transformation, the k-dependent dis-
placement transformation, is proposed for re-examining the properties of the
mutual quenching Jahn–Teller system. We show that when a unitary trans-
formation and the perturbation approximation are applied together to this
system, the retardation effect must be considered also. This requirement is
fulfilled in our approach, which takes the retardation effect into account through
a k-dependent function δk, with the result that the unitary transformation and
perturbation approximation work together properly. The order parameters,
critical temperatures, and magnetic moment of the system investigated are
calculated; they demonstrate that the retardation effect is important near the
adiabatic limit, and our approach based on transformation is effective up to this
limit.

1. Introduction

The non-Kramers degeneracy of the electron–phonon system is often called the cooperative
Jahn–Teller (CJT) effect. Recently, the study of the CJT effect has been flourishing in the
fields of high-Tc superconductivity [1] and ferroelectricity [2]; meanwhile numerous theor-
eticians and experimentalists [3–8] have been engaged in the study of the phase transitions and
long-range orderings of the CJT systems. In present paper we carry out a theoretical study
of the long-range orderings using a unitary transformation (UT) approach, and investigate the
mutual quenching CJT system as an example, to demonstrate the use of our theory.

The Hamiltonian of the system reads (we let h̄ = 1 and kB = 1 throughout the paper)

H = 1

2
C0	U

2 − g0

√
C0	

N
U

∑
m

σm
z + ε0

∑
m

Im +
∑

k

ωkb
†
kbk

− 1√
N

∑
m,k

gkσ
m
z (b

†
−k + bk)e

−ik·m − 1

2

∑
m,n

J̄mnσ
m
y σ

n
y − gµBHz

∑
m

σm
y .

(1)
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The first term describes the elastic energy of the crystal, the second term describes the inter-
action of electrons with the uniform strain U , and the next three terms are the energies of the
free electron, the phonon, and the phonon–pseudospin interaction, respectively. The last two
terms correspond to the magnetic exchange interaction and the Zeeman interaction under an
external magnetic field. N is the number of pseudospins, σm

y and σm
z the Pauli matrices at site

m, b†
k and bk the creation and annihilation operators for a phonon with frequency ωk. 	 is the

volume of the unit cell, C0 the ‘bare’ elastic constant per unit volume, g2
0 the electron–strain

coupling constant, µB the Bohr magneton, and g the spectroscopic factor for positive ions.

g2
k = α

2
ω2

0/ωk

and α is the phonon–pseudospin coupling constant, ω0 is the upper limit of the phonon freq-
uency, ω0 ∼ √

1/M , and M is the reduced mass.
Minimizing Hamiltonian (1) with respect to the equilibrium strain, we have

U = g0

√
N

C0	
σ̄z

and the Hamiltonian can be rewritten as

H = Nε0 +
N

2
g2

0 σ̄
2
z − g2

0 σ̄z
∑
m

σm
z +

∑
m

ωkb
†
kbk − 1√

N

∑
m,k

gkσ
m
z (b

†
−k + bk)e

−ik·m

− 1

2

∑
m,n

J̄mnσ
m
y σ

n
y − gµBHz

∑
m

σm
y . (2)

Since the magnetic exchange interaction is a long-range one, the sixth term of Hamiltonian (2)
can be decoupled using the mean-field approximation: σm

y σ
n
y ≈ 2σ̄yσm

y − σ̄ 2
y . But, owing to

the electron–phonon coupling in the fifth term, H (equation (2)) cannot yet be diagonalized.
A conventional treatment [3] of this problem starts with the following UT of H

(equation (2)):

H̃ = exp(S ′)H exp(−S ′) (3)

S ′ = − 1√
N

∑
m,k

gk

ωk

(b
†
−k − bk)σ

m
z e−ik·m. (4)

After the transformation,

H̃ = Nε0 +
N

2
g2

0 σ̄
2
z − g2

0 σ̄z
∑
m

σm
z +

∑
m

ωkb
†
kbk − 1√

N

∑
k

∑
m,n

g2
k

ωk

σm
z σ

n
z eik·(m−n)

− 1

2

∑
m,n

J̄mn[σm
y cosh(2gm) + iσm

x sinh(2gm)]

× [σn
y cosh(2gn) + iσn

x sinh(2gn)]

− gµBHz

∑
m

[σm
y cosh(2gm) + iσm

x sinh(2gm)] (5)

where

gm = 1√
N

∑
k

gk

ωk

(b
†
−k − bk)e

−ik·m. (6)

The previous coupling in the fifth term of H (equation (2)) is decoupled, but new tangling
occurs. Then we apply the perturbation approximation in order to permit the disregarding of
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the newly emerged electron–phonon coupling; thus cosh(2gm) → γ0, sinh(2gm) → 0, and

H̃ = Nε0 +
N

2
g2

0 σ̄
2
z − g2

0 σ̄z
∑
m

σm
z +

∑
m

ωkb
†
kbk − 1√

N

∑
k

∑
m,n

g2
k

ωk

σm
z σ

n
z eik·(m−n)

− γ 2
0

2

∑
m,n

J̄mnσ
m
y σ

n
y − gµBγ0Hz

∑
m

σm
y (7)

where

γ0 = 〈p, 0| cosh(2gm)|p, 0〉 = exp

[
− 2

N

∑
k

g2
k

ω2
k

]
. (8)

|p, 0〉 is the vacuum state of phonons. Upon making this approximation, the diagonalization
of the Hamiltonian becomes possible. Furthermore, as γ0 can be expanded in powers of
g2

k—that is, γ0 is connected with the high-order coupling between the electron and phonon—
the contribution of the electron–phonon interaction to the electron subsystem is effectively
considered via γ0. On the basis of Hamiltonian (7), Kaplan and Vekhter [3] studied the mutual
reduction of structural and magnetic orderings in the cooperative JT system of HoPO4 and
TmVO4.

2. Theoretical analysis

2.1. Difficulty

UT is a mathematical technique that does not involve any approximation; the eigenvalue of
the original Hamiltonian is invariable under the transformation; the calculation based on the
transformed eigenstates is exact. However, when it is used together with other approximation
treatments, the results become conditionally correct. To reveal this deviation, we study the
Hamiltonians in the adiabatic and antiadiabatic limits.

In the adiabatic limit (M → ∞), the original Hamiltonian (2) becomes

H(M → ∞) = Nε0 +
N

2

(
g2

0 +
2g2

Q

ωQ

)
σ̄ 2
z −

(
g2

0 +
2g2

Q

ωQ

)
σ̄z

∑
m

σm
z

− 1

2

∑
m,n

J̄mnσ
m
y σ

n
y − gµBHz

∑
m

σm
y (9)

and in the antiadiabatic limit (M → 0), the Hamiltonian becomes

H(M → 0) = Nε0 +
N

2
g2

0 σ̄
2
z − g2

0 σ̄z
∑
m

σm
z +

∑
k

ωkb
†
kbk

− 1

N

∑
k

∑
m,n

g2
k

ωk

σm
z σ

n
z eik·(m−n) − 1

2

∑
m,n

J̄mnσ
m
y σ

n
y − gµBHz

∑
m

σm
y .

(10)

Both equations (9) and (10) are obtained exactly [9, 10].
In the light of (8), the approximated Hamiltonian (7) in the two extremes should be

H̃ (M → ∞) = Nε0 +
N

2

(
g2

0 +
2g2

Q

ωQ

)
σ̄ 2
z −

(
g2

0 +
2g2

Q

ωQ

)
σ̄z

∑
m

σm
z (11)
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and

H̃ (M → 0) = Nε0 +
N

2
g2

0 σ̄
2
z − g2

0 σ̄z
∑
m

σm
z +

∑
k

ωkb
†
kbk

− 1

N

∑
k

∑
m,n

g2
k

ωk

σm
z σ

n
z eik·(m−n) − 1

2

∑
m,n

J̄mnσ
m
y σ

n
y − gµBHz

∑
m

σm
y .

(12)

Obviously, the approximated Hamiltonian (7) is consistent with the original Hamiltonian (2)
only in the antiadiabatic limit. In the adiabatic limit, the magnetic interaction terms disappear.

We attribute this error to the omission of the retardation effect in the UT. In CJT systems,
the localized electrons at different sites correlate with each other through the coupling with the
phonons. However, when the mass of the phonon increases, the coupling decreases because
the phonon cannot follow the electron instantly. This is the effect of retardation, which is
negligible in the antiadiabatic limit, but highly significant in the adiabatic limit. As the UT and
perturbation treatment does not take the retardation effect into account, the quantum lattice
fluctuation is overestimated near the adiabatic limit, where serious deviation occurs.

2.2. Solution

In order to consider the system from the adiabatic limit to the antiadiabatic limit, we adopt a
k-dependent displacement transformation [11]. First we let the Q-mode phonon be displaced
to take into account the long-range phonon ordering:

H ∗ = exp(R)H exp(−R) R = −
√
N
gQ

ωQ

(b
†
−Q − bQ)σ̄z (13)

where H is the original Hamiltonian (2), k = Q = (0, 0, 0) is the wave vector of ferroelectric
ordering which makes g2

k/ωk maximum. The second UT is a k-dependent one:

H̃ = exp(S)H ∗ exp(−S) S = − 1√
N

∑
m,k

gk

ωk

δk(b
†
−k − bk)e

−ik·m(σm
z − σ̄z). (14)

δk is a k-dependent function and its form will be determined later. We separate H̃ into three
parts according to the order of the coupling constant gk [9, 12]:

H̃ = H0 + HI1 + HI2 (15)

where

H0 = Nε0 −NV0 − Aσ̄z
∑
m

σm
z +

N

2
Aσ̄ 2

z − B
∑
m

σm
y +

∑
k

ωkb
†
kbk (16)

is the unperturbed Hamiltonian which contains the zeroth-order terms of gk, and

HI1 = − 1√
N

∑
m,k

gk(1 − δk)(σ
m
z − σ̄z)(b

†
−k + bk)e

−ik·m − 2B
∑
m

iσm
x gm (17)

is the first-order perturbative Hamiltonian which contains the first-order terms of gk. The
second- and higher-order terms of gk are contained in perturbative Hamiltonian HI2. In
equations (16) and (17),

A = g2
0 + 2

(
g2

Q

ωQ

− V0

)
(18)

represents the effective electron–electron interaction originating from both electron–strain and
electron–phonon coupling, and

B = gµBHzγ0 + J̄0σ̄y (19)
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represents the effective magnetic interaction originating from Zeeman and exchange inter-
action. Also,

gm = 1√
N

∑
k

gk

ωk

δk(b
†
−k − bk)e

−ik·m (20)

γ0 = exp

[
− 2

N

∑
k

g2
k

ω2
k

δ2
k

]
(21)

V0 = 1

N

∑
k

g2
k

ωk

δk(2 − δk) (22)

J̄0 = γ 2
0

∑
n

J̄mn cosh

[
4

N

∑
k

g2
k

ω2
k

δ2
k cos k · (m − n)

]
. (23)

In equation (14), we insert a k-dependent function δk to take into account the retardation
effect. We assume that δk takes the functional form

δk = ωk

ωk + 2A
. (24)

The reason for this choice will be given later.
Here we show our unperturbed Hamiltonian (16) in the two extremes. When M → ∞

(ω0 → 0), g2
k/ωk is a finite quantity but δk goes to zero. Thus V0 = 0, γ0 = 1, and

H0(M → ∞) = Nε0 +
N

2

(
g2

0 +
2g2

Q

ωQ

)
σ̄ 2
z −

(
g2

0 +
2g2

Q

ωQ

)
σ̄z

∑
m

σm
z

−
(
gµBHz +

∑
n

J̄mnσ̄y

) ∑
m

σm
y . (25)

We note that if we subject H(M → ∞) (equation (9)) to the mean-field approximation and
rewrite σm

y σ
n
y as 2σ̄yσm

y − σ̄ 2
y , equation (9) will have the same form as equation (25). In the

opposite extreme, M → 0 (ω0 → ∞), g2
k/ω

2
k = 0 and δk → 1. Thus

V0 = 1

N

∑
k

g2
k/ωk

and γ0 = 1, and

H0(M → 0) = Nε0 −NV0 +
N

2
Aσ̄ 2

z − Aσ̄z
∑
m

σm
z +

∑
k

ωkb
†
kbk

−
(
gµBHz +

∑
n

J̄mnσ̄y

) ∑
m

σm
y . (26)

In equation (10), if we rewrite σm
y σ

n
y and σm

z σ
n
z within the mean-field approximation, then

we obtain the same Hamiltonian, H0(M → 0) (equation (26)). In this way, we see that our
unperturbed Hamiltonian H0 (equation (16)) is consistent with the original Hamiltonian (2) in
both the adiabatic and antiadiabatic limits. In particular, the magnetic elements lost in equation
(11) are well retained here. So H0 (equation (16)) can be regarded as a better unperturbed
Hamiltonian for the perturbation approximation.
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2.3. Order parameters

As shown in the fifth and sixth terms of the original Hamiltonian (2), the electrons of different
sites correlate with each other via two sorts of long-range interaction: pseudospin–phonon
coupling and magnetic exchange interaction. These two interactions are the microscopic
origins of the competing structural and magnetic orderings in the mutual quenching JT
crystals. Therefore, we chose 〈σm

z 〉 and 〈σm
y 〉 as the structural and magnetic order parameters,

respectively.
We diagonalize H0, equation (16), by using a unitary matrix U = ∏

m Um, where

Um =
(

ium ivm

−vm um

)
(27)

um =
√
E + Aσ̄z

2E
vm =

√
E − Aσ̄z

2E
E =

√
B2 + A2σ̄ 2

z . (28)

The diagonalized form of H0 is

H ′
0 = U †H0U = Nε0 −NV0 +

N

2
Aσ̄ 2

z − E
∑
m

σm
z +

∑
k

ωkb
†
kbk. (29)

The structural order parameter

〈σm
z 〉 = Tr[exp(−βH̃ )σm

z ]

Tr[exp(−βH̃ )] = Tr[exp (−βH ′
0)({B/E}σm

x + {Aσ̄z/E}σm
z )]

Tr[exp(−βH ′
0)]

= Aσ̄z

E
tanh(βE). (30)

Thus 〈σm
z 〉 can be self-consistently determined from the equation

A

E
tanh(βE) = 1. (31)

The magnetic order parameter is

〈σm
y 〉 = Tr{exp(−βH̃ )[σm

y cosh(2gm) + iσm
x sinh(2gm)]}

Tr[exp(−βH̃ )] = BγT

E
tanh(βE) (32)

where

γT = 〈cosh(2gm)〉 = exp

[
− 2

N

∑
k

g2
k

ω2
k

δ2
k coth

βωk

2

]
. (33)

Here we have omitted the contributions of the perturbative Hamiltonian and set H̃ = H0 under
the perturbation approximation.

2.4. Explanations

From equations (4), (13), and (14) we note that, if we set δk ≡ 1, we have

S + R = − 1√
N

∑
m,k

gk

ωk

(b
†
−k − bk)σ

m
z e−ik·m = S ′.

So the previous UT, equations (3) and (4), is just a special case of our k-dependent UT when
δk ≡ 1. According to equation (24), δk ≡ 1 means ωk = ∞. However, the angular frequency
ωk (∼√

1/M) cannot be infinity unlessM = 0. In the region 0 < M < ∞, ωk must be a finite
quantity; that is, the phonons vibrate with finite frequencies and cannot follow the pseudospins
instantly. If we take δk ≡ 1, the retardation effect is omitted; as a result the quantum lattice
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fluctuation is overestimated and the phonon dressing effect [11] is underestimated. That is
why UT (3), (4) gives the incorrect Hamiltonian (7). Therefore, δk as well as the UT should
take a k-dependent form so as to take into account the retardation effect.

Now we say something about the choice of δk. The perturbative Hamiltonian HI1 (equ-
ation (17)) can be transformed as

H ′
I1 = U †HI1U = − 1√

N

∑
m,k

gke−ik·m
{
(1 − δk)

(
A

E
σm
z − 1

)
σ̄z(b

†
−k + bk)

+
δk

ωk

B

[(
A

E
− 1

)
(σm

+ bk + σm
− b

†
−k) +

(
A

E
+ 1

)
(σm

+ b
†
−k + σm

− bk)

]}
. (34)

Allowing for equation (31), the thermodynamical average of the factor (A/E)σm
z − 1 in the

first term of H ′
I1 is zero because

〈σm
z 〉0 = tanh(βE) 〈· · ·〉0 = Tr[exp(−βH ′

0) · · ·]/Tr[exp(−βH ′
0)]. (35)

The reason for introducing the functional form of δk is that, when T = 0 (A/E = 1), the term
σm

+ bk + σm
− b

†
−k in H ′

I1 disappears. Also, (σm
+ b

†
−k + σm

− bk)|g0〉 = 0 (|g0〉 is the ground state
of H ′

0).

3. Numerical calculations and discussion

As shown in equation (24), δk is a function of the wave vector k and varies within 0 � δk � 1.
In the numerical calculation, the value of δk is not given arbitrarily, but self-consistently
determined from equations (18), (22), and (24).

We adopt a three-dimensional simple cubic lattice for the numerical calculation with the
phonon frequency

ωk = ω0

√
1 − ρ(1 + ξk)/2 − π � kx, ky, kz � π (36)

where ξk = (cos kx + cos ky + cos kz)/3 and ρ measures the size of the phonon dispersion. As
all the k-dependence in the calculation arises through the frequency ωk, we can introduce the
density of states (DOS) N(ω):

N(ω) =
∑

k

δ(ω − ωk) =
∫ 1

−1
dξ Nξ (ξ)δ(ω − ω0

√
1 − ρ(1 + ξ)/2) (37)

where

Nξ(ξ) =
∑

k

δ(ξ − ξk)

is the DOS for ξk. For simplicity, we assume that Nξ(ξ) = 2
√

1 − ξ 2/π is an elliptic DOS.
Hence, we have

N(ω) = 8ω

πρω2
0

{
1 −

[
1 − 2

ρ

(
1 −

(
ω

ω0

)2)]2}1/2

(38)

for the region ω0
√

1 − ρ < ω < ω0. Outside the region, N(ω) = 0.
In figures 1(a) and 1(b), we plot the order parameters 〈σm

y 〉 and 〈σm
z 〉 as functions of

the external magnetic field Hz, respectively. The solid lines are calculated by differentiating
the free energy F (see the appendix), and hence include the contributions of the perturbative
Hamiltonian HI1 + HI2 up to second-order terms. The solid dots show the results of our
theory approximating H̃ as H0, and the dashed lines are the results of the theory for δk ≡ 1.
The consistency of the solid dots with the solid lines indicates that our theory gives a better
unperturbed Hamiltonian H0 and that the contribution of HI1 +HI2 is actually very small. So
we set H̃ = H0 in the following discussion.

We investigate the system in two cases: external magnetic field Hz = 0 and Hz > 0.
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0.0 0.1 0.2 0.3
0.0

0.5

1.0 H
cr

(b)

 

<
σ z>

H
z
/ω0

0.0

0.5

1.0

(a)

<
σ y>

Figure 1. Order parameters versus external magnetic field strength Hz/ω0 when g2
0/ω0 = 1,

α/ω0 = 0.5, T/ω0 = 0.5, and J1/ω0 = 0.1. (a) Variation of the magnetic order parameter 〈σm
y 〉.

(b) Variation of the structural order parameter 〈σm
z 〉. Hcr denotes the critical Hz at which the

structural ordering disappears. Solid lines: results including the contributions of the perturbation
HI1 +HI2 up to the second-order terms; solid dots: results from our theory setting H̃ = H0; dashed
lines: results from the theory with δk ≡ 1.

3.1. Hz = 0

According to equations (31) and (32), three phases exist when Hz = 0.

(a) When J̄0γT > A, magnetic ordering is dominant, the magnetic parameter σ̄y =
γT tanh(βJ̄0σ̄y), and the structural parameter σ̄z = 0. The prototypical crystal of this
kind is HoPO4.

(b) When J̄0γT < A, structural ordering arises: σ̄z = tanh(βAσ̄z), but σ̄y = 0. This type of
ordering exists in TmVO4.

(c) When temperature is high enough, no ordering remains and the system is in a disordered
phase.

Figure 2 is the phase diagram for the case where Hz = 0, where Tc, Tm, and Ts are
critical temperatures, and J1 is the nearest-neighbour exchange constant (the nearest-neighbour
approximation is applied in this section). The solid lines represent our results and dashed lines
the theory with δk ≡ 1. The difference between the two theories is obvious and mainly results
from the disparity as regards Tm. Our curve for Tm is quite flat, while the theory with δk ≡ 1
gives a declining one. This is because the theory with δk ≡ 1 loses the magnetic elements in
its deformed Hamiltonian.

When the system is in the magnetic phase, the magnetic parameter σ̄y > 0, so we have
an on-site magnetic moment µ = gµBγT tanh(J̄0µ/gµBkBT ). In figure 3, we plot µ/µm as
a function of J1/α at T = 0. µm = µ|ω→∞ is used as a renormalization factor. The solid
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

T
c

T
s

Triple Point
T

m

Disordered Phase

Structural
   PhaseMagnetic PhaseT

/ ω
0

α/J
1

Figure 2. The critical temperature T/ω0 versus α/J1 phase diagram. Hz = 0, g2
0/ω0 = 1, and

J1/ω0 = 0.5. Solid line: our theory; dashed line: the theory with δk ≡ 1.

0 2 4 6 8 10
0.00

0.25

0.50

0.75

1.00

Magnetic Ordering

Structural Ordering

µ/
µ m

J
1
/α

Figure 3. Site magnetic moment µ/µm versus J1/α. T = 0, g2
0/ω0 = 1, and J1/ω0 = 1.57.

Solid line: our theory; dashed line: the theory with δk ≡ 1.

line is the result from our theory, and the dashed line that from the theory with δk ≡ 1. It was
once believed that the site magnetic moment µ was significantly reduced by strong phonon–
pseudospin interaction α/J1 [3], as shown by the dashed line. But our theory proves that, due
to the retardation effect, a significant reduction is impossible even if α/J1 → ∞. The reason
is the same as for figure 2: the theory with δk ≡ 1 underestimates the magnetic interaction.

3.2. Hz > 0

In this case, as shown in figures 1(a) and 1(b), the structural ordering can be replaced by
a magnetic one with the support of Hz; hence the external magnetic field complicates the
competition between the two orderings. Magnetic ordering always exists because the crystals
are magnetized by the magnetic field and the on-site magnetic moment µ > 0 (σ̄y > 0).
Also, structural ordering occurs when J̄0γT < A and Hz < Hcr , corresponding to a phase
with coexisting magnetic and structural ordering. Here Hcr is the critical value of Hz which is
strong enough to remove structural ordering. So there are two phases in this case: the single
magnetic phase and the coexistence phase.
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When σ̄z → 0, we have tanh(βE) = gHcrγ0/(A− J̄0γT ), from which we determineHcr .
In the phase diagram in figure 4, we plot Hcr as a function of J1. The solid line represents
the result from our theory, and the dashed line that from the theory with δk ≡ 1. We note
that, given the same J1/ω0, the theory with δk ≡ 1 needs a stronger magnetic field to remove
structural ordering; this is also because of its underestimation of the magnetic interaction.

0 1 2 3 4
0.0

0.1

0.2

0.3

(I)

I

(II)

II

H
cr
/ ω

0

J
1
/ω

0

Figure 4. The critical magnetic field strength Hcr/ω0 versus J1/ω0 phase diagram. g2
0/ω0 = 1,

α/ω0 = 0.5, and T/ω0 = 0.5. I: coexistence phase; II: magnetic phase. Solid line and areas I, II:
our theory; dashed line and areas (I), (II): the theory with δk ≡ 1.

The relation between Hcr and T is plotted in figure 5. The solid line and dashed line
correspond to the results from our theory and the theory with δk ≡ 1, respectively. Just like
in figure 4, a stronger Hcr is required for the theory with δk ≡ 1. When Hz → 0, the theory
with δk ≡ 1 leads to a lower critical temperature Ts separating the structural phase and the
disordered phase, which is in accord with the result of figure 2.

0.0 0.4 0.8 1.2 1.6 2.0
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0.1

0.2

0.3

T
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(II)

(I)

II

I

H
cr
/ ω

0
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0

Figure 5. The critical magnetic field strength Hcr/ω0 versus T/ω0 phase diagram. g2
0/ω0 = 1,

α/ω0 = 0.5, and J1/ω0 = 0.1. I: coexistence phase; II: magnetic phase. Solid line and areas I, II:
our theory; dashed line and areas (I), (II): the theory with δk ≡ 1.

4. Conclusions

In this paper, we theoretically studied the mutual quenching Jahn–Teller system using the
following procedure:
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(1) Apply a k-dependent displacement transformation to the original Hamiltonian H to take
into account the retardation effect.

(2) Divide the transformed Hamiltonian into unperturbed and perturbative Hamiltonians by
means of perturbation theory.

(3) Consider the system on the basis of the unperturbed Hamiltonian H0.

The central concern of this paper is how to get a good unperturbed Hamiltonian. We
show that the retardation effect is important. After taking it into account, our unperturbed
Hamiltonian H0 works well from the adiabatic to the antiadiabatic limit.

The new approach of k-dependent displacement transformation which is developed in this
paper has the following applications and significance:

(a) It enables the theoretical analysis of the mutual quenching JT system from the adiabatic
to the antiadiabatic limit. This approach can also be applied to other cooperative JT and
pseudospin–phonon systems.

(b) The new transformation has a sound physical content: the k-dependent function δk
represents the retardation effect of the electron–phonon interaction.

(c) We show that the cooperative JT system displays different features in the adiabatic and the
antiadiabatic limits as well as in the intermediate domain. These features were confused
in previous works. We are able to tell them apart and give a complete description with the
aid of this new approach.

In the framework of the k-dependent displacement transformation, we have re-examined
the properties of the mutual quenching JT system. Our results are different from the previous
ones, especially as regards the critical temperature Tm and the magnetic moment µ. As shown
in figures 2 and 3, the two variables should change little according to our theory; however,
the theory with δk ≡ 1 predicts an appreciable decline in them. We believe that our theory
has disclosed the real nature of the system, and anticipate further support from experimental
observation.

Appendix

In equations (30) and (32) we calculate the order parameters by approximating H̃ as H0. If
more accuracy is desired, the order parameters may be represented through the differentiation
of the free energy F . In perturbation theory, F can be calculated as follows [13]:

−β(F − F0) = −
∫ β

0
dτ 〈H ′

I1(τ )〉0

+
∫ β

0
dτ1

∫ τ1

0
dτ2 〈[H ′

I1(τ1)H
′
I1(τ2)]〉0 −

∫ β

0
dτ 〈H ′

I2(τ )〉0 + O(g3
k) (A.1)

where F0 is the free energy of H ′
0, and H ′

I1(τ ) = exp(H ′
0τ)H

′
I1 exp(−H ′

0τ) holds in the
interaction picture.

The order parameters are

〈σm
y 〉 = Bγ0

E
− Aσ̄z

E
〈σm

x 〉′ + 〈iσm
y sinh(2gm)〉′ +

Bγ0

E
〈σm

z [cosh(2gm)− γ0]〉′

− Aσ̄z

E
〈σm

x [cosh(2gm)− γ0]〉′ (A.2)

〈σm
z 〉 = B

E
〈σm

x 〉′ +
Aσ̄z

E
〈σm

z 〉′ (A.3)
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where

〈· · ·〉′ = Tr[exp(−βH ′) · · ·]/Tr[exp(−βH ′)]

H ′ = U †H̃U = H ′
0 + H ′

I1 + H ′
I2.

(A.4)

〈σm
z 〉′ and 〈σm

x 〉′ can be calculated by means of differentiation:

〈σm
z 〉′ = − 1

N

∂

∂hz
F (hz, hx)

∣∣∣∣
hz=0,hx=0

〈σm
x 〉′ = − 1

N

∂

∂hx
F (hz, hx)

∣∣∣∣
hz=0,hx=0

. (A.5)

For calculating F(hz, hx), we let

H ′
0 = Nε0 −NV0 +

N

2
Aσ̄ 2

z +
∑

k

ωkb
†
kbk −

∑
m

(E + hz)σ
m
z −

∑
m

hxσ
m
x . (A.6)

The results are

〈σm
y 〉 = Bγ0

E
tanh(βE)

{
1 − 2

N

∑
k

g2
k

ωk

(1 − δk)
2 βσ̄ 2

z

sinh2(βE)

[
1 − coth(βE)

βE

]

+ (γT − γ0)

[
βB2

E2

gµBHzγ0

cosh2(βE)
+
gµBHzγ0

E
σ̄ 2
z cosh(βE) +

B

E
tanh(βE)

]

+ (J̄T − J̄0)
Bγ0

E

[
βB

E

tanh(βE)

cosh2(βE)
− σ̄ 2

z

]

+ f1 − Aσ̄ 2
z coth2(βE)f2 +

EγT

γ0
f3

}
(A.7)

〈σm
z 〉 = σ̄z

{
1 − 2

N

∑
k

g2
k

ωk

(1 − δk)
2

sinh2(βE)

[
βσ̄ 2

z +
B2

AE2

]
+ (γT − γ0)

B

E2

[
2βE

sinh(2βE)
− 1

]

+ (J̄T − J̄0)
B2 tanh(βE)

E3

[
2βE

sinh(2βE)
− 1

]
+ f1 − B2 coth(βE)

E
f2

}
(A.8)

where

J̄T = γ 2
T

∑
n

J̄mn cosh

[
4

N

∑
k

g2
k

ω2
k

δ2
k cos k · (m − n)

]
(A.9)

f1 = 4

N

∑
k

g2
kδ

2
k

ω2
k

B2

{
[coth(βE) + 1]2

ωk − 2E

[
coth(βE)− coth(βωk/2)

ωk − 2E
− β coth(βωk/2)

sinh(2βE)

]

− [coth(βE)− 1]2

ωk + 2E

[
coth(βE) + coth(βωk/2)

ωk + 2E
− β coth(βωk/2)

sinh(2βE)

]}
(A.10)

f2 = 4

N

∑
k

g2
kδ

2
k

ω2
k

{
coth(βE) + 1

ωk − 2E
[coth(βE)− coth(βωk/2)]

+
coth(βE)− 1

ωk + 2E
[coth(βE) + coth(βωk/2)]

}
(A.11)

f3 = 4

N

∑
k

g2
kδ

2
k

ω2
k

{
coth(βE) + 1

ωk − 2E
[coth(βE)− coth(βωk/2)]

− coth(βE)− 1

ωk + 2E
[coth(βE) + coth(βωk/2)]

}
. (A.12)
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Here all the second-order contributions have been taken into account. And when T = 0,

〈σm
y 〉 = Bγ0

E
〈σm

z 〉 = σ̄z. (A.13)

So the second-order contributions (O(g2
k)) become zero when T = 0.

The numerical results from equations (A.7) and (A.8) are plotted in figures 1(a) and 1(b),
respectively.
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